Finite element analysis of the effect of fibre shape on stresses in an elastic fibre surrounded by a plastic matrix

نویسندگان

  • K. L. GOH
  • K. J. MATHIAS
  • R. M. ASPDEN
  • D. W. L. HUKINS
چکیده

The finite element (FE) method was used to calculate the axial and radial stress distributions as a function of axial distance, z, from the centre, and radius, r, in an elastic fibre surrounded by a plastic matrix. Plastic deformation of the matrix was considered to exert a uniform interfacial stress, τ , along half the length of the fibre. Axisymmetric models were created for uniform cylindrical, ellipsoidal, paraboloidal and conical fibres characterised by an axial ratio, q, and half length, L. Young’s modulus for the material of the fibre and L were arbitrarily assigned values of unity, since they act as scaling factors; q also acts as a scaling factor but was assigned a value of 10 to create models with a fibrous appearance. For the cylindrical fibre, the axial stress increased linearly from the end towards the centre; the radial stress was more evenly distributed. At the other extreme, the conical fibre showed a uniform distribution of axial and radial stress. Results for ellipsoidal and paraboloidal fibres were intermediate between these two extremes. In general, the effect of taper is to lower peak stress at the fibre centre and make the stress distribution throughout the fibre more even. These results are in good agreement with recent analytical theories for the axial distribution of surface radial stress and axial stress along the fibre axis. However, FE models have the advantage of predicting full three-dimensional stress distributions. C © 2000 Kluwer Academic Publishers

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space

In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function.   The general solution of the equation of motion is obtained, which satisfies the required radiation condition.  The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...

متن کامل

Finite element modelling of creep deformation in fibre-reinforced ceramic composites

The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-Si3N4 matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both twoand threedimensional finite element m...

متن کامل

Finite element analysis of elastic-plastic solids under Vickers indentation: surface deformation

Finite element modeling has been used to study the development of surface deformation during indentation with a Vickers indenter. A wide range of materials with different elastic modulus and yield stresses are examined. Results show that in a pyramidal indentation process, for a perfectly plastic material, sinking-in during loading can change to pile-up in unloading. This phenomenon depends on ...

متن کامل

Finite element method modelling of the properties of a Cu–SiC composite under cyclic loading conditions

The paper reports on finite element method (FEM) analysis of Cu–SiC composites behaviour under cyclic loading conditions. In order to emphasise the influence of materials description on following results, there were two hardening rules used to describe the plastic behaviour of the matrix: (a) simple isotropic and (b) combined isotropic-kinematic. Reinforcing ceramics was assumed to be perfectly...

متن کامل

Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading

The effect of fibre bundling on the effective transverse properties of unidirectional fibre composites has been investigated by way of finite element method and micromechanics models of fibre bundles. Based on the micromechanical model of single-fibre composites, plane strain models for composites reinforced by fibre bundles are presented. The effective elasto-plastic stress /strain behaviour w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000